7 Лекция. Выбор системы инженерно-геологической разведки Категории СЛОЖНОСТИ параметров. инженерно-M ee условий. Щель M геологических задачи инженерноопробования. Классификация зланий геологического сооружений. Фильм об ИГ условиях на ул. Десантная в Днепропетровск.

Принципы выбора системы инженерно-геологической разведки и ее параметров

Система инженерно-геологической разведки и ее параметры устанавливаются в зависимости от следующих факторов:

назначения и конструкции сооружения;

сложности инженерно-геологических условий участка его возведения; степени инженерно-геологической изученности этого участка.

Назначение сооружения определяет главным образом систему инженерногеологической разведки. Так, например, при обосновании проектов линейных сооружений работы обычно концентрируются по выбранной трассе, при обосновании проектов жилых и общественных зданий по их осям или контурам, при обосновании зданий и сооружений промышленного назначения - по осям фундаментов и т.д.

Конструкция сооружения в общей схеме определяет параметры системы инженерно-геологической разведки, так как местоположение точек вскрытия (изучения) геологического разреза, точек отбора образцов для определения физико-механических свойств грунтов основания или среды сооружения или точек испытания грунтов полевыми методами должно соответствовать местам приложения к основанию концентрированных (под отдельными опорами сооружения) и динамических нагрузок (под фундаментами станков и механизмов, вызывающих эти нагрузки), местам сопряжения нагрузок разного знака или разной интенсивности.

Места приложения концентрированных нагрузок или сопряжения нагрузок разного знака и разной интенсивности располагаются на расстояниях, равных или кратных строительному (конструктивному) модулю сооружения. Поэтому и расстояния между точками производства инженерно-геологических работ должны быть равны (или кратны) строительному модулю проектируемого сооружения.

Выбор системы инженерно-геологической разведки и ее параметров исходя из назначения и конструкции сооружения однозначно может быть осуществлен только в простых инженерно-геологических условиях (I категория сложности). В условиях средней и повышенной сложности (II и III категории) система инженерно-геологической разведки и ее параметры будут во многом определяться характером изучаемого массива

грунтов.

В районах распространения грунтов, характеризующихся специфическими свойствами (просадочных, набухающих и др.), схема расположения точек производства работ и расстояния между точками помимо назначения и конструкции сооружения будут зависеть от условий залегания этих грунтов и их соотношения в разрезе с другими грунтами.

В районах развития физико-геологических процессов система инженерно-геологической разведки и ее параметры должны обеспечить получение достоверных исходных данных для количественной оценки влияния того или иного процесса на устойчивость проектируемого сооружения. Схемы расположения точек производства работ и расстояния между этими точками в подобных случаях будут также приниматься в основном по геологическим соображениям.

Если основание или среда сооружения характеризуется сложным строением (резкая незакономерная изменчивость мощности слоев грунтов, линзовидное залегание грунтов и т.д.), то система инженерно-геологической разведки и ее параметры должны обеспечить достоверное выделение в разрезе инженерно-геологических элементов и их качественное опробование. В этом случае местоположение точек производства работ помимо конструкции сооружения определяется также и геологическими соображениями.

Нормативные документы по инженерным изысканиям для основных видов строительства обычно регламентируют соответствующее увеличение количества горных выработок и сокращение расстояний между ними с возрастанием сложности инженерногеологических условий строительства. Однако, как это показывают примеры, приведенные выше, местоположение дополнительных горных выработок и точек производства других видов работ должно определяться творчески, в зависимости от характера решаемой геологической задачи. Автоматическое сокращение расстояний между горными выработками и точками производства других видов работ с увеличением категории сложности инженерно-геологических условий строительства недопустимо.

Категории сложности инженерно-геологических условий строительной площадки (участка трассы) при производстве инженерно-геологической разведки рекомендуется устанавливать по следующей таблице:

Категории сложности инженерно-геологических условий строительной площадки (участка трассы)

Группа		Категории сложности и их характеристики		
факторов	I категория	II категория	III категория	
Геоморф ологичес кая	Строительная площадка (участок трассы) располагается в пределах одного геоморфологического элемента	Строительная площадка (участок трассы) располагается в пределах группы геоморфологических элементов одного и того же генезиса	Строительная площадка (участок трассы) располагается в пределах группы геоморфологических элементов разного генезиса	
	Поверхность геоморфологического элемента ровная или слабо наклонная. Планировочные работы не проектируются	Поверхность геоморфологических элементов ровная или слабо наклонная. При проектировании возможно использование форм рельефа. Планировочные работы проектируются в небольшом объеме	Поверхность геоморфологических элементов резко расчлененная Планировочные работы проектируются в большом объеме	
Геологич еских условий	В сфере взаимодействия сооружений с грунтами залегает не более двух различных по литологии слоев. Мощность слоев выдержана по простиранию	В сфере взаимодействия сооружений с грунтами залегает не более трех различных по литологии слоев. Мощность слоев изменяется по простиранию закономерно	В сфере взаимодействия сооружений с грунтами залегает более трез различных по литологии слоев. Мощность слоев резко изменяется по простиранию Линзовидное залеганию грунтов	
	Показатели физикомеханических свойств грунтов выдержаны в пределах слоя. Скальные грунты залегают с поверхности или перекрыты маломощным слоем нескальных грунтов	Показатели физикомеханических свойств грунтов в пределах слоя изменяются закономерно. Скальные грунты имеют неровную кровлю и перекрыты одним-двумя слоями нескальных грунтов	Показатели физико-механических свойств грунтов в пределах слоз изменяются резко или незакономерно Скальные грунты имеют резко расчлененную кровлю и перекрыть нескальными грунтами	
Гидрогео логическ ая	Грунтовые воды отсутствуют или имеется один выдержанный горизонт грунтовых вод, уровень которого располагается ниже отметок заложения фундаментов	Уровень грунтовых вод залегает выше отметок заложения фундаментов. Имеется несколько горизонтов грунтовых вод	Горизонты грунтовых вод не выдержаны по простиранию. В линзах и карманах грунтовые воды обладают местным напором	
	Горизонты подземных вод, обладающих напором, отсутствуют	Имеется один выдержанный горизонт подземных вод, обладающий напором	Горизонты подземных вод обладающие напором, не выдержань по простиранию	
Физико-	Физико-геологические	Физико-геологические	Физико-геологические процессы и	
геологич	процессы и явления,	процессы и явления, влияние	явления имеют повсеместно	
еских	отрицательно влияющие на	которых необходимо учитывать	распространение. Имеются случан	
процессо	устойчивость	при проектировании зданий и	деформаций зданий и сооружений	

При выборе системы инженерно-геологической разведки и ее параметров необходимо учитывать степень изученности инженерно-геологических условий участка строительства проектируемого сооружения, так как в отдельных случаях часть задач инженерно-геологической разведки может быть решена без ее производства по материалам ранее выполненных изысканий под другие рядом расположенные объекты или по материалам крупномасштабной инженерно-геологической съемки, выполненной на предыдущем этапе изысканий под проектируемый объект.

Задачи инженерно-геологической разведки всегда должны конкретизироваться и детализироваться применительно к инженерно-геологическим условиям возведения данного проектируемого сооружения и степени их изученности на данном участке.

Эти задачи, сформулированные для конкретных инженерно-геологических условий при проведении работ для проектирования конкретного сооружения, можно определить как частные задачи инженерно-геологической разведки.

Формулировка частных задач должна осуществляться на основе анализа фактического материала, имеющегося в распоряжении геолога до начала производства инженерногеологической разведки, и сопоставления его с общими задачами разведки.

Если, например, имеющийся фактический материал позволяет построить достоверную инженерно-геологическую модель основания или среды проектируемого сооружения и охарактеризовать физико-механические свойства выделенных инженерно-геологических элементов, то частная задача инженерно-геологической разведки сводится к проверке выполненных построений. Это значит, что система проведения инженерно-геологической разведки и параметры этой системы должны быть подчинены решению только этой задачи.

Если же имеющийся фактический материал не позволяет решить ни одной общей задачи инженерно-геологической разведки, то выбор ее системы и параметров полностью определяется назначением и конструкцией сооружения и сложностью инженерногеологических условий его возведения.

Одновременно с системой инженерно-геологической разведки и ее параметрами быть установлены система и параметры инженерно-геологического опробования. Обе эти системы и их параметры должны быть увязаны между собой таким образом, чтобы для каждого выделяемого инженерно-геологического элемента можно было получить обобщенные значения физико-механических свойств с заданной (или установленной для данного типа сооружения) доверительной вероятностью, т.е. их гарантированные значения.

При определении местоположения точек вскрытия (изучения) геологического разреза и точек производства других видов работ необходимо учитывать местоположение ранее пройденных шурфов и скважин, точек производства геофизических, зондировочных работ, выполненных на данном участке при производстве изысканий под другие объекты строительства или на предыдущих этапах изысканий под проектируемый объект.

Инженерно-геологическое опробование грунтов при выполнении разведки следует производить для получения нормативных и расчетных значений показателей физикомеханических свойств грунтов применительно к расчетным схемам сооружений и их оснований. Для этого необходимо проводить отбор образцов грунтов из предварительно выделенных инженерно-геологических элементов, типизацию и обобщение результатов определения свойств грунтов и окончательное выделение инженерно-геологических элементов, вычисление нормативных и расчетных значений показателей по каждому инженерно-геологическому элементу.

Система инженерно-геологического опробования — это принятое расположение в пространстве точек отбора образцов для изучения свойств грунтов и точек непосредственного проведения полевых определений показателей свойств грунтов. Числовой характеристикой плотности расположения этих точек являются интервал и шаг опробования.

Обработку, анализ и обобщение материалов опробования необходимо проводить по мере их получения с самого начала полевых работ, поскольку это позволит своевременно скорректировать или изменить системы опробования, составленные на основе рабочих гипотез.

При обработке материалов опробования, полученных в процессе проведения инженерногеологической съемки и разведки, их анализа и обобщения, должны широко использоваться методы математической статистики (по ГОСТ 20522-75 и прил. 1 главы СНиП II-15-74).

Полевые и лабораторные исследования свойств грунтов при инженерногеологической разведке следует проводить с учетом условий работы грунтов в сфере их взаимодействия со зданием и сооружением. Выбор методов полевых и лабораторных исследований свойств грунтов необходимо проводить в соответствии с требованиями нормативных документов и государственных стандартов. указанных в прил.

Выбор метода определения показателей свойств грунтов при инженерногеологической разведке зависит от заданной (или установленной) точности этого определения, ОТ инженерно-геологических условий участка проектируемого строительства, в первую очередь состава и состояния грунтов, от конструкции проектируемого сооружения, главным образом конструкции фундаментов заглубляемой ниже поверхности земли части сооружения, а также режима его

эксплуатации.

При выборе методов определения показателей свойств грунтов следует учитывать также следующее.

Полевые методы дают возможность изучения свойств грунтов в больших объемах и в условиях их естественного залегания, но требуют относительно сложного оборудования и значительных объемов подготовительных работ. Кроме того, в большинстве случаев полевые определения не позволяют моделировать условия работы грунтов в процессе строительства и эксплуатации сооружений, что осложняет прогнозную оценку поведения грунтов как среды или основания сооружения.

Лабораторные методы наряду с возможностью изучения свойств грунтов естественного сложения (из монолитов) позволяют изучать эти свойства в заданном режиме давлений, влажности и температуры и создавать условия, в которых грунт может находиться как в процессе строительства, так и в процессе эксплуатации сооружения, т.е. существенно упростить инженерно-геологический прогноз. Низкие трудовые и материальные затраты на одно определение позволяют увеличивать их количество и путем статистической обработки частных значений показателей повысить точность конечного результата.

Поскольку полевые и лабораторные методы имеют свои преимущества и недостатки, их следует применять в комплексе.

Некоторые методы определения свойств грунтов стандартизированы, и технология их проведения регламентирована. В случаях расхождения природных условий и режима эксплуатации сооружений с требованиями государственных стандартов необходимо проводить опытно-экспериментальные работы с привлечением в качестве консультантов представителей научно-исследовательских организаций, а выбор метода или способа определения свойств грунтов обосновывать в программах работ.

В состав лабораторных исследований грунтов должны включаться те методы, которые позволяют непосредственно определять используемые в расчетах проектировщиков показатели физико-механических свойств грунтов, в том числе и опытные замачивания грунтов в котлованах, замеры порового давления, определение напряженного состояния массива грунтов и т.д., а также испытания свай.

В целях обеспечения разработки прогноза изменения физико-механических свойств грунтов в процессе строительства и эксплуатации зданий и сооружений следует широко использовать методы инженерно-геологического моделирования.

При планировании состава исследований следует иметь в виду, что надежное определение деформационных свойств грунтов может быть осуществлено только полевыми методами. Применение лабораторных методов может быть оправдано для частичного сокращения объема более дорогих полевых испытаний, в случаях нгу Кафедра строительства и геомеханики, доц. Максимова Э.А. Курс лекций по дисциплине: «ИНЖЕНЕРНАЯ РАЗВЕДКА».. 6

необходимости проведения специальных исследований с целью выявления характера изменений деформационных свойств грунтов во времени и т.п.

Объем исследований грунтов при выполнении разведки зависит от капитальности, объемно-планировочных и конструктивных особенностей проектируемых зданий и сооружений, а также сложности грунтовых условий в сфере взаимодействия зданий и сооружений с геологической средой, оцениваемой по результатам съемки.

Применительно к промышленному и гражданскому строительству планирование объема исследований грунтов рекомендуется осуществлять, используя следующую классификацию.

Выделяются три категории зданий или сооружений в зависимости от их капитальности и конструктивных особенностей.

К первой категории относятся гражданские здания до 9 этажей и промышленные сооружения с нагрузками на колонну каркаса не более 300 тс/см², ко второй гражданские здания до 16 этажей и промышленные сооружения с нагрузками на колонну не более 2000 тс/см², к третьей - высокие здания и сооружения (более 16 этажей), промышленные сооружения с нагрузками на колонну каркаса более 2000 тс/см², а также тяжелые сооружения со сравнительно небольшими габаритами в плане (дымовые трубы, доменные печи, силосные корпуса и т.п.).

Для зданий и сооружений I категории и при I категории сложности грунтовых условий (см. табл.) исследования грунтов следует проводить в минимальном объеме, но в то же время достаточном для получения статистически обоснованных показателей свойств грунтов. Так, при строительстве одиночных зданий или сооружений в пределах сферы взаимодействия с геологической средой каждого из них должны быть пройдены хотя бы две скважины с отбором образцов грунта для последующих лабораторных исследований и выполнено не менее чем в пяти точках зондирование (когда проведение его возможно по грунтовым условиям).

При возрастании той или иной категории на одну ступень объем исследований грунтов следует увеличивать примерно в 1,5 раза, а на две ступени - в 2 раза. Таким образом, применительно к одиночным зданиям и сооружениям третьей категории и при третьей категории сложности грунтовых условий требуемое число скважин возрастет до 8, а точек зондирования - до 20 (включая пройденные ранее, в том числе при рекогносцировке и съемке).

При назначении объема исследований следует иметь в виду, что с целью получения статистически обоснованных нормативных и расчетных значений тех или иных показателей физико-механических свойств грунтов, требующихся при проектировании, для каждого инженерно-геологического элемента, выделенного в сфере взаимодействия

сооружения (или группы сооружений) с геологической средой, необходимо иметь данные о частных значениях этих показателей не менее чем в шести пунктах, достаточно равномерно расположенных в пределах инженерно-геологического элемента.

При проведении инженерно-геологической разведки в районах распространения специфических по составу, состоянию и свойствам грунтов, а также физико-геологических процессов следует учитывать дополнительные требования, связанные с особенностями указанных грунтов и процессов.

По каждому типу или виду специфических грунтов изучению подлежат следующие характеристики:

для лессовых просадочных грунтов - величина относительной просадочности грунтов с учетом дополнительного давления от сооружения, общее содержание и состав воднорастворимых солей, содержание гумуса и рН среды;

для вечномерзлых грунтов - температура, литологический состав, влажность (суммарная W_c , минеральных прослоев грунта W_r), льдистость (за счет ледяных включений Π_c , за счет порового льда Π_y), степень заполнения льдом и незамерзшей водой пор мерзлого грунта G_1 , объемная масса мерзлого грунта и скелета мерзлого грунта, засоленность (и состав солей), теплофизические свойства (объемная и удельная теплоемкости, коэффициент теплопроводности), величина относительной осадки при протаивании грунта, величина сцепления мерзлого грунта, сопротивление мерзлых грунтов сдвигу (значения отдельных показателей свойств мерзлых грунтов ввиду трудностей их определения в полевых условиях можно принимать по таблицам приложений к главе СНиП II-18-76);

для заторфованных грунтов и торфов - величина деформаций уплотнения поверхностных и погребенных грунтов и торфов во времени с учетом дополнительного давления от сооружения, количественное содержание органического вещества, степень заторфованности, зольность, степень разложения и волокнистости, величина рН, параллельные характеристики компрессионных и консолидационных испытаний, коэффициент консолидации, величины конечного сжатия и конечной осадки и длительности осадки с учетом нагрузки от сооружения, величина структурной прочности, изменение прочностных характеристик с учетом фактора времени по мере уплотнения грунтов;

для набухающих грунтов - величина относительного набухания или усадки с учетом дополнительного давления от сооружения, влажность и давление набухания, горизонтальное давление при набухании, нижняя зона набухания, микроагрегатный и дисперсный зерновой состав, минеральный состав, состав поглощенных оснований и емкость поглощения, свободное набухание, водопроницаемость набухающих грунтов;

для засоленных грунтов - величина суффозионной осадки для горизонтов засоленных грунтов, качественный состав и количественное содержание легко- и среднерастворимых, а по особому заданию - труднорастворимых солей;

для элювиальных грунтов - коэффициенты выветрелости и структурной прочности, стойкость к процессам выветривания, временные сопротивления сжатию, зерновой состав;

для скальных трещиноватых грунтов - ориентировка, густота, ширина, длина и заполнитель трещин с выделением блоков по параметрам трещиноватости.

После того как установлены границы сферы взаимодействия проектируемого сооружения с геологической средой, сформулированы частные задачи инженерногеологической разведки, выбраны ее система и параметры, в том числе система и параметры опробования, приступают к выбору методов производства работ.

ПРИМЕЧАНИЕ: В некоторых источниках классификация приведена наоборот.

Классификация зданий и сооружений имеет своей целью способствовать выбору экономически целесообразных решений при проектировании.

В основу классификации положено деление зданий и сооружений на классы в зависимости от их назначения и значимости (СНиП II-А.3-62. Утверждены Государственным комитетом Совета Министров СССР по делам строительства 29 мая 1962 г.)

Деление на классы зданий и сооружений устанавливается раздельно для каждой группы их видов, сходных по своему назначению (производственные здания промышленных предприятий, жилые здания, общественные здания, плотины, мосты, линии электропередачи и др.).

КЛАССИФИКАЦИЯ

- 1. Отнесение отдельных проектируемых зданий и сооружений к тому или иному классу должно производиться в зависимости от следующих признаков:
- а) народнохозяйственного значения, размеров и мощности комплексного объекта, (населенный пункт, промышленное предприятие, железная дорога, гидроузел, линия электропередачи и т.п.), в составе которого осуществляется строительство данного здания или сооружения;

- б) градостроительных требований (для объектов в населенных пунктах);
- в) концентрации материальных ценностей и уникального оборудования, устанавливаемого в здании или сооружении;
- г) запасов сырьевых ресурсов, для переработки которых проектируется объект;
- д) фактора моральной амортизации здания и сооружения.
- 2. По совокупности приведенных в п. 1 признаков здания и сооружения каждого вида делятся на четыре класса, причем к I классу относятся здания и сооружения, к которым предъявляются повышенные требования, а к IV классу относятся здания и сооружения, к которым предъявляются минимальные требования.
- 2.3. Класс зданий и сооружений или основной группы их в комплексных объектах строительства назначается организацией, выдающей задание на проектирование.
- 2.4. Указания по отнесению проектируемых зданий к различным классам, а также эксплуатационные требования и требуемые степень долговечности и степень огнестойкости основных конструктивных элементов приводятся в нормах проектирования зданий и сооружений.
- 2.5. В составе комплексного объекта строительства могут устанавливаться разные классы для отдельных зданий и сооружений в зависимости от их назначения в общем комплексе. При этом к повышенному классу следует относить здания и сооружения, прекращение работы которых в случае ремонта или аварии существенно нарушает работу комплексного объекта или связанного с ним предприятия.
- 2.6. Класс объекта должен проставляться в проектных материалах (на титульных листах), при этом классы зданий и сооружений обозначаются римскими цифрами (I, II, III и IV). Особые условия указываются в применении к обозначению класса.